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Резюме 
Динамические стохастические модели общего равновесия (DSGE) – современный прикладной инструмент мак-
роэкономического анализа. Данные модели в настоящее время широко используются центральными банками и 
другими экономическими институтами. Исследования в области DSGE-моделирования с середины 2000-х гг. 
осуществляет и Национальный банк Беларуси. DSGE-модели основаны на экономической теории, параметры 
таких моделей являются структурными, описывающими поведение экономических агентов на микроуровне, что 
делает DSGE-модели не подверженными критике Лукаса. В данной работе рассматривается методология прак-
тического применения DSGE-моделей, в частности механизм нахождения условий оптимальности, лог-
линеаризации уравнений модели, решения систем линейных разностных уравнений с рациональными ожидани-
ями, а также оценки параметров модели. 
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1. ВВЕДЕНИЕ 

Современная экономическая наука предполагает широкое применение математических ме-
тодов как на этапе формализации теоретических положений, так и в ходе проведения прак-
тических экономических исследований. Для решения задач, возникающих в процессе реали-
зации экономической политики, необходимы достаточно сложные модели. Примером таких 
моделей являются динамические стохастические модели общего равновесия (DSGE). 

DSGE-модели, с одной стороны, являются формализацией теоретических положений, а 
с другой стороны, могут использоваться для количественного анализа и прогнозирования. 
Более того, DSGE-модели теоретически не подвержены критике Лукаса1, а значит, могут 
применяться для анализа различных вариантов экономической политики (Galí, 2008). Это яв-
ляется следствием того, что в DSGE-моделях на микроуровне рассматриваются предпочте-
ния экономических агентов и ограничения, в рамках которых они осуществляют свою дея-
тельность (в отличие от традиционных макроэконометрических моделей, в которых изна-
чально анализируются агрегированные показатели). Параметры, характеризующие предпо-
чтения и ограничения, считаются структурными, не подверженными изменению при измене-
нии правил экономической политики. 

В настоящее время DSGE-модели используются многими центральными банками и 
другими экономическими институтами. Исследования в области DSGE-моделирования с се-
редины 2000-х гг. проводит и Национальный банк Беларуси. В частности, Национальным 
банком была разработана модель среднесрочного прогнозирования и проектирования моне-
тарной политики, которая включает в себя элементы DSGE-моделей (Демиденко, 2008). Это 
актуализирует исследования в данной области в Беларуси. 

В большой части научных работ в области экономики, опубликованных за последние 
десять лет, для ответа на экономические вопросы авторы строят DSGE-модели. В то же вре-
мя существует недостаток литературы (особенно русскоязычной), в которой излагаются ос-
новы DSGE-моделирования. Цель данной работы – рассмотреть методологию DSGE-
моделирования. Для этого в работе анализируется структура DSGE-моделей, методика их 
разрешения и определения параметров. 

Работа имеет следующую структуру. Во втором разделе на основе простой модели ре-
ального делового цикла рассматриваются базовые соотношения DSGE-моделей, формулиру-
ются оптимизационные задачи экономических агентов, находятся условия оптимальности, 
проводится процедура по преобразованию модели в стационарную систему. В третьем разделе 
уравнения рассматриваемой модели лог-линеаризуются около устойчивого состояния, после 
чего с помощью метода Бланшара – Кана решается полученная система разностных уравнений 
с рациональными ожиданиями. В четвертом разделе рассматриваются методы определения 
параметров DSGE-моделей, в частности калибровка, метод максимального правдоподобия, 
байесовское оценивание и др. В пятом разделе подводятся итоги исследования. 

2. СТРУКТУРА DSGE-МОДЕЛИ 

Теоретическим фундаментом классических DSGE-моделей следует считать теорию реально-
го делового цикла (RBC). Основателями этой теории являются экономисты Ф.Э. Кидланд и 
Э.К. Прескотт. Модель общего равновесия, которую они использовали для анализа деловых 
циклов, можно считать первым примером DSGE-модели. 

Теория реального делового цикла основывается на положениях новой классической 
теории. Так, в RBC модели Кидланда и Прескотта предполагается, что рынки являются со-
вершенно конкурентными, цены полностью гибкими, а ожидания экономических агентов ра-

                                                   
1 Критика Лукаса – это ряд критических замечаний Р.Э. Лукаса, относящихся к использованию традиционных 
макроэконометрических моделей для анализа различных вариантов экономической политики. Лукас указал на 
то, что параметры таких моделей будут изменяться при изменении экономической политики вследствие изме-
нения ожиданий и поведения рациональных экономических агентов (Lucas, 1976). 
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циональны (Kydland и Prescott, 1982). Ключевым положением теории реального делового 
цикла является то, что колебания роста реального выпуска возникают только вследствие шо-
ков, воздействующих на уровень технологии. В дальнейшем DSGE-модели были модифици-
рованы с учетом положений новой кейнсианской теории: вместо совершенно конкурентных 
рынков стали рассматриваться рынки с монополистической конкуренцией, а также введены 
предпосылки о жесткости цен и номинальных заработных плат. Примером DSGE-модели, 
дополненной предпосылками новой кейнсианской теории, является, например, модель, из-
ложенная Galí и Gertler (2007). 

Таким образом, большинство современных DSGE-моделей, с одной стороны, основаны 
на теории рациональных ожиданий и строятся на основе методологии, предложенной 
Кидландом и Прескоттом в начале 1980-х гг., а с другой стороны, в них рассматриваются 
монополистически конкурентные рынки и учитывается номинальная жесткость цен и зара-
ботных плат. 

Стандартными этапами построения DSGE-модели являются спецификация модели, 
нахождение условий оптимальности, лог-линеаризация соотношений модели около устойчи-
вого состояния, решение лог-линеаризованной системы, нахождение значений параметров 
модели. 

Рассматриваемая в данной работе DSGE-модель охватывает поведение домохозяйств и 
фирм. Наиболее объемные DSGE-модели могут включать также анализ поведения экономи-
ческих властей, реализующих монетарную и фискальную политику, и экономических аген-
тов, создающих внешний спрос. Примером такой модели является DSGE-модель, используе-
мая Европейским центральным банком (Christoffel, Coenen и Warne, 2008). Тем не менее для 
анализа базовых характеристик DSGE-моделей представляется целесообразным рассмотреть 
более простую модель. В качестве примера используется модификация модели, изложенной 
во второй главе Galí (2008). В частности, принимаются следующие предпосылки: 
1. помимо потребления, домохозяйства могут осуществлять инвестиции. Это позволяет 

дополнить модель процессом накопления капитала, а также специфицировать более ре-
алистичную производственную функцию; 

2. для простоты из модели исключается возможность приобретения домохозяйствами об-
лигаций; 

3. так как государственный сектор в модели не рассматривается, то для упрощения налоги 
также не моделируются. 

2.1. Репрезентативное домохозяйство 

Домохозяйство в каждом периоде времени � решает следующую задачу: 

max
��

�,��
�

�� �� ���� �ln �� − �
��

���

1 + �
�

�

���
�, (1)2

где �� – объем потребления некоторого композитного товара, �� – количество отработанных 
часов, ��{��}= �(��|���) – рациональное ожидание переменной �� (математическое ожи-
дание переменной �� при условии доступной в периоде времени � информации (���)), 
0 < � < 1 – коэффициент дисконтирования, 0 < � < 1 – параметр масштаба3, � ≥ 0 – пара-
метр, в оптимуме обратный эластичности �� по реальной заработной плате. 

                                                   
2 Похожую функцию полезности (выражение в круглых скобках) применяют, например, Christoffel, Coenen и 
Warne (2008) и Christiano, Trabandt и Walentin (2010). 
3 Необходимость использования данного параметра связана с определением ��  как количества отработанных 
часов за период. Если не использовать �, то значение совокупной полезности за период в большинстве случаев 
будет отрицательной. Можно привести простой пример. Если � = 1, � – день, �� = 8, то, чтобы полезность бы-
ла положительной, должно выполняться условие �� > ���. Очевидно, что такое условие в большинстве случаев 
соблюдаться не будет. Поэтому для придания большего экономического смысла функции полезности в ней ис-
пользуется параметр �. 
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Соотношение (1) отражает проблему максимизации ожидаемой дисконтированной 
суммы значений функции полезности репрезентативного домохозяйства. Проблема задается 
на бесконечном временном интервале. Полезность для домохозяйства возрастает при увели-
чении потребления и снижается при увеличении объема отработанных часов. 

Репрезентативное домохозяйство в модели владеет запасом капитала и сдает его в 
аренду фирмам. Домохозяйство может потреблять производимый фирмами композитный то-
вар либо использовать его для осуществления инвестиций4. Объем потребления и инвести-
ций домохозяйства не может превышать объем его заработной платы и арендной платы за 
капитал, поэтому домохозяйство осуществляет свою деятельность в условиях следующего 
бюджетного ограничения: 

��(�� + ��)≤ ���� + �� ��, (2)

где ��  – цена товара, �� – объем инвестиций, ��  – заработная плата за час работы, �� – ставка 
арендной платы за использование капитала, �� – запас капитала, которым владеет домохо-
зяйство. 

Процесс накопления капитала описывается соотношением: 

���� = (1 − �)�� + ��, (3)

где 0 < � < 1 – норма амортизации. 
Для решения проблемы (1) при учете (2) и (3), то есть решения динамической (беско-

нечный временной интервал) и стохастической (ожидаемая, а не детерминированная, полез-
ность) оптимизационной задачи, можно использовать различные методы. В частности, мож-
но применить теорему Каруша – Куна – Такера и метод стохастического динамического про-
граммирования, что рассматривают, например, Heer и Maußner (2009), а также использовать 
вариационный аргумент, который применяет Galí (2008). В работе используются условия 
Каруша – Куна – Такера. Детали решения проблемы домохозяйства находятся в Приложении 
1. Воспроизведем полученные условия оптимальности: 

��

��

= �����
�

 (4)

��� �
����

��������

+
1 − �

����

� =
1

��

 (5)

��(�� + ��)= ���� + �� ��. (6)

Условие (4) показывает, что в оптимуме реальная заработная плата равна предельной 
норме замещения свободного времени (которое можно обозначить как �� − ��, где �� – число 
часов в периоде времени �) потреблением. (4) можно также интерпретировать как положи-
тельную зависимость предложения труда от реальной заработной платы и предельной полез-
ности потребления. 

В условии (5)5 отражена положительная взаимосвязь между предельной нормой 
межвременного замещения текущего потребления будущим и ожидаемой реальной ставкой 
арендной платы. Если ожидаемая ставка увеличивается, то оптимально направить часть те-
кущего потребления на инвестиции и, следовательно, увеличить будущий запас капитала. 
Больший запас капитала в следующем периоде вместе с более высокой ставкой арендной 
платы приведет к большей сумме поступлений от аренды, которые в том числе сделают воз-

                                                   
4 Понятно, что это не самое реалистичное положение, однако целью данной работы является не построение 
максимально реалистичной модели, а анализ принципов DSGE-моделирования. В то же время использование 
таких упрощений является распространенным методом. Например, модели с похожими характеристиками рас-
сматривает Hansen (1985). 
5 Соотношения вида (5) входят в класс уравнений Эйлера (Heer и Maußner, 2009, с. 12). 
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можным больший объем потребления, который компенсирует изначальный объем потребле-
ния, от которого домохозяйство отказалось в текущем периоде. 

Условие (6) показывает, что домохозяйство полностью расходует свой доход на по-
требление и инвестиции. 

2.2. Репрезентативная фирма 

Фирма в каждом периоде времени � решает проблему максимизации прибыли: 

max
��,��,��

{���� − �� �� − ����}, (7)

где �� – выпуск репрезентативной фирмы. 
Выпуск ограничен производственной функцией вида6: 

�� = ����
�(����)���, (8)

где �� – экзогенная переменная, отражающая общефакторную производительность, 0 < � < 1 
– параметр, равный эластичности выпуска по капиталу, �� – тренд, приводящий к росту эф-
фективности труда. Для упрощения предполагается детерминированный тренд с темпом 
прироста � > 1.7 

Общефакторная производительность описывается следующим процессом8: 

�� = ����
�

�������, (9)

где 0 < � < 1 – параметр, характеризующий силу связи между значениями общефакторной 
производительности в смежные периоды времени, � > 0 – устойчивое значение уровня об-
щефакторной производительности, ��~��(0, ��) – временный шок, обуславливающий коле-
бания общефакторной производительности (технологический шок), � – стандартное откло-
нение технологического шока. 

Решение проблемы фирмы приводит к следующим условиям оптимальности (детали 
решения находятся в Приложении 2): 

��

��

= (1 − �)
��

��

 (10)

��

��
= �

��

��
. (11)

Условия (10), (11) описывают спрос фирмы на труд и капитал и показывают, что в оп-
тимуме реальная заработная плата равна предельному продукту труда, а реальная ставка 
арендной платы – предельному продукту капитала. 

2.3. Равновесие 

В равновесии выполняется равенство спроса на товар со стороны репрезентативного домохо-
зяйства и предложения товара репрезентативной фирмой, то есть: 

�� = �� + ��. (12)

                                                   
6 Похожие производственные функции используют Ireland (2004) и Christoffel, Coenen и Warne (2008). 
7 В качестве альтернативы можно задать стохастический тренд. Например, стохастический тренд вводят 
Christoffel, Coenen и Warne (2008). В то же время для успешного разрешения модели темп роста тренда необхо-
димо представлять в виде стационарного процесса с некоторым устойчивым значением, что ограничивает реа-
листичность модели. Например, для Беларуси данное предположение не соблюдается. Поэтому усложнение 
модели (в лог-линеаризованных соотношениях модели будет участвовать дополнительная переменная, отража-
ющая логарифмическое отклонение темпа роста от устойчивого значения) путем задания стохастического 
тренда в рамках данного исследования можно считать нецелесообразным. 
8 По аналогии с (Ireland, 2004). 
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Так как рассматриваемые в модели экономические агенты репрезентативны, то соот-
ношение (12) можно также интерпретировать как равенство совокупного спроса и предложе-
ния, а все предыдущие соотношения рассматривать с позиции экономики в целом. 

Соотношения (3)–(6), (8)–(12) – это группа равенств, описывающих механизм функци-
онирования моделируемой экономики, оптимальное поведение экономических агентов. Да-
лее рассматриваются только соотношения (3)–(5), (8)–(12), так как (6) (с учетом (12)) являет-
ся комбинацией (10) и (11). 

На этом этапе можно было бы приступить к разрешению модели, то есть нахождению 
равновесных значений переменных, однако в большинстве случаев, включая наш, такое ре-
шение найти невозможно9. В общем случае это является следствием того, что многие соот-
ношения DSGE-моделей нелинейны, некоторые уравнения представляют собой рекуррент-
ные соотношения, причем в уравнениях могут присутствовать ожидаемые значения пере-
менных. Основной проблемой является последнее свойство. Например, в рассматриваемой 
модели «проблемным» является уравнение (5). Для того чтобы решить данную проблему, 
необходимо сначала осуществить лог-линеаризацию соотношений модели около устойчиво-
го состояния, а затем решить полученную систему линейных разностных уравнений с рацио-
нальными ожиданиями. 

Поскольку большинство переменных модели, очевидно, нестационарны, то сначала, 
исходя из допущения о том, что они стационарны вокруг тренда, выполняется процедура ис-
ключения тренда из переменных, что также осуществляли, например, Smets и Wouters (2002), 
Ireland (2004), Christoffel, Coenen и Warne (2008). Для этого, предполагая, что все реальные 
переменные, за исключением ��, содержат общий тренд, связанный с ростом эффективности 

труда, они делятся на ��
10. Также предполагается, что все номинальные переменные содер-

жат общий стохастический тренд, связанный с ценой товара11, и осуществляется их транс-
формация в реальные. Таким образом, условия (3)–(5), (8)–(12) принимают следующий вид: 

���� =
1 − �

�
�� + �� (13)

�� = ���ℎ�
�

 (14)

��� �
���� + 1 − �

����
� =

�

��
 (15)

�� = �������
�ℎ�

��� (16)

�� = ����
�

�������  (17)

�� = (1 − �)
��

ℎ�
 (18)

�� = ��
��

��

 (19)

�� = �� + ��, (20)

где �� = �� ����⁄ 12, �� = �� ��⁄ , �� = �� (����)⁄ 13, �� = �� ��⁄ , ℎ� = ��, �� = �� ��⁄ , �� = �� ��⁄ , 
�� = ��. 

                                                   
9 Пример модели, которая может быть решена аналитически, приводит Den Haan (2010). 
10 Такой подход применяли Ireland (2004), Christoffel, Coenen и Warne (2008). 
11 Такой подход применяли Christoffel, Coenen и Warne (2008). 
12 Объем капитала делится на уровень эффективности труда в предыдущем периоде, так как капитал – это пред-
определенная в предыдущем периоде переменная. Такой подход применяют Christoffel, Coenen и Warne (2008). 
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В результате проведения процедуры исключения тренда систему уравнений (13)–(20) 
можно считать стационарной системой, которая описывает динамику реальных стационар-
ных переменных. Необходимо заметить, что такой метод трансформации системы в стацио-
нарную, безусловно, не является однозначным. Чтобы применять такой подход, вообще го-
воря, необходимо сначала протестировать временные ряды соответствующих переменных на 
существование общих детерминированных/стохастических трендов. Эту проблему рассмат-
ривают, например, Juselius и Franchi (2007). 

3. ЛОГ-ЛИНЕАРИЗАЦИЯ СООТНОШЕНИЙ DSGE-МОДЕЛИ И ЕЕ РЕШЕНИЕ С 
ПОМОЩЬЮ МЕТОДА БЛАНШАРА – КАНА 

3.1. Лог-линеаризация соотношений модели около устойчивого состояния 

Процесс лог-линеаризации заключается в преобразовании соотношений модели таким обра-
зом, что все уравнения становятся линейными функциями относительно переменных, пред-
ставленных в виде логарифмических отклонений от устойчивых значений, то есть, например, 

��� = ln �
��

�
�, где �� – значение переменной в периоде времени �, а � – ее устойчивое (steady 

state) значение14 (Uhlig, 1995). Соответственно, сначала необходимо найти устойчивые зна-
чения переменных, которые они принимают в отсутствии каких-либо шоков. Понятно, что 
устойчивое значение может существовать только у стационарной переменной. Так как была 
осуществлена трансформация переменных, то можно вычислить их устойчивые значения. 
Процесс их нахождения заключается в замене значений переменных в каждом периоде вре-
мени на их устойчивое значение, которое принимается за константу. Причем целью является 
нахождение устойчивых значений, которые в итоге определяются только параметрами моде-
ли. Для этого необходимо решить систему уравнений (13)–(20), преобразовав каждое урав-
нение с учетом вышеуказанного. Решая данную систему, получаем: 

� = �1 −
��

�
� � (21)

ℎ = �
�(1 − �)

�(� − ��)
�

�
���

 (22)

� =
��

�
� (23)

� =
��

�
� (24)

� =
�

�
− 1 + � (25)

� = (1 − �)
�

��� �� − �
��

�
�

�
���

� (26)

                                                                                                                                                                         
В то же время Ireland (2004) делит капитал на текущий уровень эффективности. В данной работе используется 
подход, применяемый Christoffel, Coenen и Warne (2008), так как он представляется более корректным. 
13 Как и в (Christoffel, Coenen и Warne, 2008), предполагается, что номинальная заработная плата содержит и 
стохастический тренд, связанный с ценами, и тренд, связанный с ростом эффективности труда (который содер-
жит реальная заработная плата). 
14 Аналогичные обозначения будут применяться для всех переменных и далее. 
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� = �
�

��� �
�

�
�

�
���

�
�(1 − �)

�(� − ��)
�

�
���

, (27)

где � = � − 1 + �, � =
�

�
− 1 + �, � = � (это видно из (17)). 

(27) можно подставить в (21), (23), (24), (26) и найти соответствующие устойчивые зна-
чения, определяемые только параметрами модели. 

После того как устойчивые значения переменных определены, можно осуществлять лог-
линеаризацию равновесных соотношений модели. Для этого можно использовать два подхода. 
Во-первых, можно применить разложение в ряд Тейлора первого порядка для обеих частей 
уравнений, а затем преобразовать результат, учитывая разложение в ряд Тейлора первого по-
рядка для логарифмической функции. Во-вторых, можно использовать подстановку вида: 

�� = ����� . (28)

Подстановка вида (28) применяется ко всем переменным модели, а соотношения моде-
ли затем преобразуются, учитывая уравнения, описывающие устойчивые состояния модели, 
а также вид разложения в ряд Тейлора некоторых функций. 

В работе применен первый подход и получены следующие соотношения (детали лог-
линеаризации на примере соотношения (13) изложены в Приложении 3): 

������ ≈ (1 − �)��� + ���̂ (29)

��� = ��̂ + �ℎ�� (30)

��̂ ≈ ���̂��� −
��

�
���̂��� (31)

��� = ��� + ���� + (1 − �)ℎ�� (32)

��� = ������ + �� (33)

��� = ��� − ℎ�� (34)

�̂� = ��� − ��� (35)

��� ≈ �1 −
��

�
� ��̂ +

��

�
�̂� . (36)

В некоторых соотношениях используется знак равенства, что обусловлено тем, что их 
можно получить без разложения в ряд Тейлора, а путем логарифмирования базовых соотно-
шений и вычитания логарифма устойчивого состояния. 

3.2. Разрешение модели с помощью метода Бланшара – Кана 

Система (29)–(36) – это система линейных уравнений, которая включает разностные уравне-
ния, причем содержащие ожидаемые значения переменных. Для решения систем линейных 
разностных уравнений с рациональными ожиданиями можно использовать методы, разрабо-
танные Blanchard и Kahn (1980), Uhlig (1995), Klein (2000), Sims (2000) и др. В работе ис-
пользуется классический метод Бланшара – Кана. 

Первым этапом применения метода Бланшара – Кана является трансформация модели в 
форму: 

�
����

������
� = � �

��

��
� + ���, (37)
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где ��  – вектор переменных, предопределенных в предыдущий период времени, �� – вектор 
переменных, значения которых определяются в текущий период времени, �, � – матрицы 
параметров, �� – вектор экзогенных переменных. 

Систему (29)–(36)15 можно записать в виде: 

� �
����

������
� = � �

��

��
� + ���, (38)

где �7х7
16, �7х7 – матрицы, вид которых приведен в Приложении 4, �� = ���, �� =  

= [��̂ ℎ�� �̂� �̂� ��� ���]�, � = [0 0 0 1 0 0 0]�, �� = ���. 
В рассматриваемой модели матрица � сингулярна, что не позволяет представить (38) в 

виде (37) и продолжить процедуру решения модели. Для того чтобы решить эту проблему, 
необходимо несколько преобразовать динамическую систему. Используя подход, применен-
ный Ireland (2004), сначала запишем в матричном виде соотношения (30), (32), (34)–(36), ко-
торые содержат переменные только одного периода времени: 

��� = ��� + ����, (39)

где вид матриц �5х5, �5х2 представлен в Приложении 4, �� = [ℎ�� ��̂ �̂� ��� ��� ]�, �� =  

= [��� ��̂]�, � = [0 1 0 0 0]�. 
Соотношения (29), (31), в свою очередь, можно представить следующим образом: 

������� + ������� = ��� + ���, (40)

где вид матриц �2х2, �2х5, �2х2, �2х5 представлен в Приложении 4. 
Умножив слева обе части (39) на ���, подставив результат в (40) и преобразовав итого-

вое выражение, получаем: 

������ = ��� + ����, (41)

где ��х� = (� + �����)��(� + �����), ��х� = (� + �����)��(����� − ������)17. 
Несложно заметить, что (41) – это пример модели в форме (37). Помимо решения про-

блемы сингулярности матрицы � в (38), упростился дальнейший процесс решения, так как 
(41) содержит только две эндогенные переменные. 

Ключевая идея, заложенная в методе Бланшара – Кана, заключается в свойстве квад-
ратных матриц, которое позволяет осуществить декомпозицию матрицы � следующим обра-
зом: 

� = �����, (42)

где �2х2 – матрица, столбцами которой являются обобщенные собственные векторы матрицы 
�, �2х2 – жорданова форма матрицы � (верхнетреугольная матрица, на главной диагонали ко-
торой находятся собственные значения матрицы �, все значения выше главной диагонали 
равны нулю, кроме значений на первой наддиагонали, которые могут быть равны единице). 

Вид матриц � и � не приводится, так как в нашем случае они очень громоздки. Заметим, 
что элементы на главной диагонали матрицы � упорядочиваются от меньшего до большего 
по модулю (что предполагает также перестановку столбцов матрицы �). 

Учитывая (42), (41) можно преобразовать в следующий вид: 

������
∗ = ���

∗ + ����, (43)

где ��
∗ = �����, ��х� = ����. 
Запишем (43) учитывая вид векторов и матриц и выполнив операции умножения: 

                                                   
15 Без соотношения (33), которое определяет экзогенную динамику общефакторной производительности. 
16 7х7 – размерность матрицы. 
17 В процессе вычисления использовался очевидный результат: �� ����� = ���� (так как �(��)= 0). Несложно 
также показать, что �� ����� = �����. 
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�
����,���

∗

����,���
∗ � = �

����,�
∗

����,�
∗ � + �

�����

�����
�. (44)18

Для того чтобы система (44) имела единственное решение, необходимо выполнение 
условий: 

|��|≤ 1, |��|> 1. (45)

Если оба собственных значения матрицы � по модулю превышают единицу, то система 
не имеет решений (более корректно – стабильных решений, так как это пример взрывного 
(explosive) решения). Если оба собственных значения по модулю меньше либо равны едини-
це, то система имеет бесконечное число решений. Доказательство этих утверждений приво-
дят Blanchard и Kahn (1980). 

В рассматриваемой модели собственные значения матрицы � – это громоздкие выра-
жения. Проверить выполнение условия (45) в общем виде представляется затруднительным. 
Зачастую предполагается достаточным ограничиться предположением о том, что условие 
(45) выполняется. Если условие не выполняется при практической реализации модели, то 
нужно несколько изменить значения параметров. Тем не менее проверка условия (45) была 
осуществлена для определенных значений параметров с помощью простого алгоритма, пред-
ставленного в Приложении 5. В алгоритме, реализованном на языке MATLAB, учитывая 
ограничения на параметры модели (0 < �, �, � < 1, � ≥ 0, � > 1), перебирается множество 
возможных комбинаций параметров и тестируется выполнение условия (45). С помощью ал-
горитма было протестировано более 14 миллионов возможных комбинаций параметров, и во 
всех случаях условие (45) выполняется. 

В (44) есть два уравнения, содержащих ожидаемые значения переменных. Выполнение 
условия (45) позволяет решить второе уравнение и получить выражение для ��,�

∗ , которое не 

содержит ожидаемых значений переменных: 

��,�
∗ =

��

� − ��
���. (46)

Вывод соотношения (46) находится в Приложении 6. 
Учитывая, что ��

∗ = �����, запишем следующее: 

�
��,�

∗

��,�
∗ � = ��� �

���

��̂
� = �

��� ���

��� ���
� �

���

��̂
� = �

������ + �����̂

������ + �����̂

�. (47)

Учитывая (46), получаем выражение для ��̂: 

��̂ = ����� + �����, (48)

где �� = −
���

���
, �� =

��

���(����)
. 

Подставив (48) в верхнее уравнение в (47), а затем подставив результат в верхнее урав-
нение в (44) и преобразовав, в итоге получим: 

����� = ����� + �����, (49)

где �� =
�������������� ���

���������
. 

Учитывая (48) и (39), получаем: 

�� = ����� + �����, (50)

где �� = ����[1 ��]�, �� = ����[0 ��]� + ���� – векторы размерности 5х1. 

                                                   
18 В нашем случае матрица � диагональна. Если число линейно независимых собственных векторов матрицы � 
меньше размерности матрицы �, некоторые элементы матрицы � (в нашем случае – один элемент), находящие-
ся выше главной диагонали, могут быть равны единице. 



Методология построения, разрешения и оценки параметров DSGE-моделей 

11 

 

Соотношения (33), (48)–(50) описывают динамику линеаризованной системы. Эти со-
отношения можно записать в более компактном виде следующим образом: 

���� = W�� + � ���� (51)

�� = Y��, (52)

где �� = [��� ���]�, W = �
�� ��

0 �
�, � = [0 1]�, �� = [��̂ ��

�]�, Y�х�= �
�� ��

�� ��
�. 

Алгоритм разрешения модели на языке MATLAB представлен в Приложении 7. 

4. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ DSGE-МОДЕЛИ 

Существует два основных подхода к определению параметров DSGE-моделей: калибровка 
параметров и их оценивание с помощью эконометрических методов (метод максимального 
правдоподобия, обобщенный метод моментов и др.). Тем не менее калибровка часто может 
предполагать некоторое использование эконометрических методов, а эконометрическое оце-
нивание – использование калибровки. В частности, широко распространенным является бай-
есовский подход, в рамках которого независимо производится калибровка параметров и их 
эконометрическое оценивание, после чего, учитывая результаты обеих процедур, вычисля-
ются финальные оценки параметров. 

4.1. Калибровка 

Сущность калибровки заключается в определении параметров модели на основе статистиче-
ских характеристик данных, результатов микро- и макроэконометрических исследований, 
теоретических соображений19. В частности, наиболее распространенным методом является 
присвоение параметрам таких значений, при которых устойчивые значения переменных, 
определенные с помощью модели, будут соответствовать средним значениям реальных вре-
менных рядов (так, однако, могут быть определены не все параметры). 

Возвращаясь к рассматриваемой модели, �, �, �, �, � и � могут быть найдены путем ре-
шения системы (21)–(27) или (13)–(20) (что более просто, но предварительно необходимо за-
менить значения переменных на константы, соответствующие устойчивым значениям) отно-
сительно параметров. Выражения для вышеназванных параметров (в общем виде) приведены 
в Приложении 8. Для того чтобы определить значение параметра �, можно использовать ре-
зультаты микроэконометрических исследований или результаты его оценки в других рабо-
тах, связанных с DSGE-моделированием. Параметры � и � можно определить, оценив урав-
нение (33) с помощью метода наименьших квадратов, предварительно построив ряд обще-
факторной производительности (который можно легко получить на основе временных рядов 
по выпуску, капиталу и труду, используя определенное ранее значение параметра �). В дан-
ном случае идет речь об использовании эконометрических методов, однако это не противо-
речит сущности процедуры калибровки параметров, так как полноценное эконометрическое 
оценивание предполагает применение эконометрических методов к системе уравнений в це-
лом. В то же время механизм определения � и � является примером того, что калибровка не 
обязательно исключает использование эконометрики. 

4.2. Метод максимального правдоподобия 

Метод максимального правдоподобия заключается в получении оценок параметров путем 
максимизации функции правдоподобия, то есть функции совместной плотности вероятности 
выборки20. 

В случае DSGE-моделей метод максимального правдоподобия не может быть применен 
автоматически, так как не существует статистики по переменной, отражающей общефактор-

                                                   
19 Сущность процесса калибровки подробно описывают, например, Cooley и Prescott (1995), Murchison и Ren-
nison (2006), Heer и Maußner (2009). 
20 Сущность метода максимального правдоподобия подробно изложена Hamilton (1994). 
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ную производительность (ряд не может быть построен, так как параметр � подлежит оцен-
ке). Помимо ряда общефакторной производительности ненаблюдаемыми в различных DSGE-
моделях признаются и другие ряды. В частности, довольно часто ненаблюдаемым признает-
ся ряд капитала, например в моделях, построенных Smets и Wouters (2002), Ireland (2004), 
Christoffel, Coenen и Warne (2008). Для формирования временных рядов ненаблюдаемых пе-
ременных используют фильтр Кальмана. 

Еще одной проблемой, возникающей при использовании метода максимального прав-
доподобия, является проблема стохастической сингулярности DSGE-моделей21. Например, в 
рассматриваемой модели существует только один шок – временный технологический шок, 
влияющий на общефакторную производительность. Остальные переменные определяются на 
основе уравнений, не содержащих шоков. Присутствие в системе только одного шока приво-
дит к тому, что ковариационная матрица вектора наблюдаемых переменных будет иметь не-
полный ранг, а значит, нельзя определить ее обратную матрицу, которая является необходи-
мым элементом в функции правдоподобия в случае использовании предпосылки о много-
мерном нормальном распределении вектора наблюдаемых переменных (что делается в 
большинстве случаев). 

Запишем логарифмическую функцию правдоподобия для рассматриваемой модели: 

ln �(�|ℱ) = −3� ln(2�)−
1

2
� ln|�Γ���|

�

���
−

1

2
� [(��)�(�Γ���)����]

�

���
, (53)

где � – функция правдоподобия, � – вектор параметров модели, ℱ – матрица, содержащая 

выборку по переменным вектора �� за период времени от 1 до �, Γ� = �[��(��)�]
22

. 
Ранг ковариационной матрицы �Γ��� в (53) неполный для любых значений параметров, 

что легко показать, произведя операции умножения и транспонирования для матриц в общем 
виде и приведя полученную матрицу к ступенчатому виду. Данную матрицу нельзя инверти-
ровать, а значит, (53) является неопределенной величиной. 

Для решения проблемы стохастической сингулярности применяют два метода. Первый 
заключается в добавлении в модель дополнительных структурных шоков, пока количество 
шоков не будет равно количеству наблюдаемых переменных. Второй – во введении в модель 
ошибок измерения. В нашем случае второй метод будет заключаться в добавлении вектора 
ошибок измерения в правую часть (52). Оба подхода имеют свои недостатки. Дополнитель-
ные структурные шоки накладывают на модель дополнительные теоретические ограничения, 
а введение ошибок измерения можно интерпретировать как искусственную меру, необходи-
мость применения которой свидетельствует о том, что модель является плохо специфициро-
ванной. Тем не менее ошибки измерения могут быть интерпретированы и как результат 
несоответствия реальных статистических данных теоретическим переменным, рассматрива-
емым в модели, что делает применение данного метода обоснованным. 

Возвращаясь к проблеме ненаблюдаемых переменных, то есть к использованию филь-
тра Кальмана23, модель сначала должна быть представлена в пространстве состояний (state-
space representation). Рассматриваемая модель, записанная в виде (51)–(52), уже представлена 
необходимым образом. (51) – это уравнение состояния (state equation), (52) – уравнение 
наблюдения (observation equation). Тем не менее, для того чтобы применить фильтр Кальма-
на, необходимо решить проблему стохастической сингулярности, так как в ходе вычислений 

                                                   
21 Эту проблему обсуждают, например, Ireland (2004), Ruge-Murcia (2007), Tovar (2009). 
22 При выводе функции правдоподобия математическое ожидание элементов вектора, описываемого в (51), бы-
ло принято равным нулю, что автоматически делает равным нулю математические ожидания элементов вектора 
(52). Можно заметить, что собственные значения матрицы W равны J� и �. 0 < � < 1 по определению, а J� тео-
ретически может быть равно единице. Однако в ходе выполнения алгоритма, описанного в Приложении 5, во 
всех случаях выполнялось ограничение |J�|< 1, на основе чего можно заключить, что процесс в (51) стациона-
рен, что обуславливает равенство нулю математических ожиданий (Hamilton, 1994, с. 378). 
23 Механизм использования фильтра Кальмана подробно рассматривают Hamilton (1994), Ljungqvist и Sargent 
(2004). 
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возникнет та же проблема, что и при вычислении функции правдоподобия (необходимо бу-
дет инвертировать ковариационную матрицу). Поэтому преобразуем (52) в: 

�� = ��� + ��, (54)

где ��  – вектор ошибок измерения размерности 6х1. Делается предположение, что ошибки 
нормально распределены с нулевым средним, а их ковариационная матрица диагональна. 

Формулы фильтра Кальмана для рассматриваемой модели следующие: 

����� = W��� + ����� − ����� (55)

�� = WΣ���(�Σ��� + ℚ)�� (56)

Σ��� = WΣ�W� + � ��� � − WΣ���(�Σ��� + ℚ)���Σ�W�, (57)

где переменные с тильдой являются оценками на основе фильтра Кальмана, �� – матрица, 

называемая усилением Кальмана (Kalman gain), Σ� = � ���� − ������� − ����
�

�, ℚ = �(����
�). 

Для того чтобы использовать формулы фильтра Кальмана, необходимо определить 
начальное значение вектора ненаблюдаемых переменных и ковариационной матрицы ошиб-
ки прогноза (оценки). Начальные значения в нашем случае вычисляются следующим обра-
зом: ��� = �(��) = 0�х�, ���(Σ�) = (��х� − W⨂W)���⨂X��, где ��� – оператор векторизации 
(преобразования матрицы в вектор путем последовательного размещения столбцов один под 
другим), � – единичная матрица, ⨂ – произведение Кронекера24. Вычислив начальные значе-
ния, можно последовательно применять формулы (55)–(57) для построения временных рядов 
ненаблюдаемых переменных. 

Оценив значения ненаблюдаемых переменных, можно применить результаты фильтра 
Кальмана для спецификации функции правдоподобия. В нашем случае логарифмическая 
функция правдоподобия принимает следующий вид: 

ln �(�|ℱ) = −3� ln(2�)−
1

2
� ln|�Σ��� + ℚ|−

�

���
 

−
1

2
� ���� − �����

�
(�Σ��� + ℚ)����� − ������

�

���
. 

(58)

В функции (58) матрица �Σ��� + ℚ не является сингулярной, поэтому может быть про-
изведена максимизация функции (58) по параметрам, что позволит получить точечные оцен-
ки всех параметров модели25. 

4.3. Байесовское оценивание параметров 

Байесовский метод оценки параметров DSGE-моделей сочетает в себе процесс калибровки и 
эконометрического оценивания методом максимального правдоподобия26. 

Используя теорему Байеса и свойства предельной функции плотности вероятности 
(marginal density), можно записать: 

�(�|ℱ) =
�(ℱ|�)�(�)

�(ℱ)
=

�(�|ℱ)�(�)

∫ �(�|ℱ)�(�)��
, (59)

где �(�|ℱ) – апостериорная функция плотности вероятности вектора параметров модели, 
�(�) – априорная функция плотности вероятности вектора параметров модели. 

                                                   
24 Подробнее механизм вычисления начальных значений изложен Hamilton (1994, с. 378). 
25 (58), учитывая (55)–(57), зависит от матриц W, �, �, которые, в свою очередь, зависят от параметров 
�, �, �, �, �, �. (57) в явном виде зависит от �. Элементы вектора �� представляют собой логарифмические от-
клонения наблюдаемых переменных (с исключенным трендом) от устойчивых значений, в определении кото-
рых участвуют параметры � и �. 
26 Байесовское оценивание параметров DSGE-моделей рассматривают, например, Schorfheide (2006), An и 
Schorfheide (2007). 
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�(�) вычисляется следующим образом. Путем калибровки определяются точечные 
оценки параметров, которые принимаются за их математические ожидания. На основе пред-
положений автора, значений в других исследованиях и т.д. определяются стандартные от-
клонения параметров. В зависимости от ограничений на параметры делаются предположения 
об их законах распределения. Например, если параметр по определению неотрицателен, то 
используют гамма-распределение; если значения параметра находятся в диапазоне от нуля 
до единицы, то используют бета-распределение; если параметр может принимать любые зна-
чения, то применяют нормальное распределение и т.д. Исходя из априорного математическо-
го ожидания и стандартного отклонения параметра, определяется вид �(�). 

Так как вид функции правдоподобия известен, то можно определить и вид числителя в 
(59), в то время как знаменатель является константой (не зависит от �). 

Для того чтобы вычислить оценку параметра на основе апостериорного распределения, 
необходимо оценить его математическое ожидание. Эта задача может решаться с помощью 
алгоритма случайного блуждания Метрополиса – Гастингса (RWM) и алгоритма выборки по 
значимости (IS) (An и Schorfheide, 2007). 

4.4. Другие методы оценки параметров 

Помимо методов, описанных выше, существуют другие методы оценки параметров, которые 
применяются реже27: 
1. обобщенный метод моментов, который заключается в минимизации отклонений мо-

ментов (например, математического ожидания) реальных данных и моментов перемен-
ных, определенных на основе параметров модели. Соответственно, в данном случае 
необходимо, чтобы выражения для моментов могли быть получены аналитически; 

2. метод моментов с применением симулированных данных (simulated method of 
moments), который фундаментально напоминает предыдущий метод, но моменты не 
вычисляются аналитически (иногда такие вычисления невозможно осуществить). Вме-
сто этого проводится симуляция временных рядов переменных (при принятых опреде-
ленных значениях параметров), и используются моменты симулированных данных. За-
дача состоит в определении таких параметров, при которых расхождение между реаль-
ными и симулированными моментами будет минимальным; 

3. метод, заключающийся в минимизации расхождения между параметрами векторной ав-
торегрессии (VAR), оцененной по реальным данным, и VAR, оцененной по симулиро-
ванным данным; 

4. метод минимизации значений функций импульс-отклик, полученных с помощью моде-
лей VAR, оцененных по реальным и симулированным данным. 

5. ЗАКЛЮЧЕНИЕ 

DSGE-модели являются моделями общего равновесия, основанными на теории реального 
делового цикла (модели первого поколения) или новой кейнсианской теории (модели второ-
го поколения). Стандартная DSGE-модель описывает поведение по крайней мере домохо-
зяйств и фирм. В более сложных моделях моделируется поведение экономических властей, 
реализующих бюджетно-налоговую и монетарную политику. В моделях открытой экономи-
ки дополнительно моделируется внешний спрос. В DSGE-моделях принимается предполо-
жение о репрезентативности экономических агентов. 

Домохозяйства в DSGE-моделях максимизируют ожидаемый дисконтированный поток 
полезностей в условиях бюджетного ограничения. Фирмы максимизируют прибыль, либо 
ожидаемый дисконтированный поток прибылей с учетом технологических ограничений – 
производственной функции. Важной особенностью DSGE-моделей является то, что обще-
факторная производительность предполагается подверженной стохастическим технологиче-
ским шокам. Таким образом, модель является динамической и стохастической. 

                                                   
27 Подробнее данные методы рассматривает Ruge-Murcia (2007). 
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Для разрешения DSGE-моделей условия оптимальности и другие уравнения модели 
лог-линеаризуются около устойчивого состояния, после чего решается система линейных 
уравнений, некоторые из которых могут быть разностными, а также содержать ожидаемые 
значения переменных. Решение осуществляется с помощью различных методов, например 
метода Бланшара – Кана. 

Параметры DSGE-моделей, во-первых, могут определяться с помощью калибровки, то 
есть экспертных оценок на основе характеристик статистических данных и результатов дру-
гих исследований. Во-вторых, для их оценки могут использоваться эконометрические мето-
ды. В последние годы наибольшее распространение получило использование байесовского 
оценивания параметров, учитывающее как априорную экспертную информацию о значениях 
параметров, так и результаты эконометрической оценки с помощью метода максимального 
правдоподобия. Тем не менее в настоящее время нет единого мнения научного сообщества 
относительно большей эффективности какого-либо из методов определения параметров. Не-
смотря на то что эконометрическое оценивание максимально полно учитывает характери-
стики реальных статистических данных, для его использования необходимо решение про-
блемы стохастической сингулярности DSGE-моделей, что связано с дополнением модели 
сомнительными предпосылками. 

Код DSGE-модели, рассмотренной в данной работе, для программы Dynare приведен в 
Приложении 9. 
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ПРИЛОЖЕНИЕ 1. РЕШЕНИЕ ОПТИМИЗАЦИОННОЙ ПРОБЛЕМЫ 
ДОМОХОЗЯЙСТВА 

Если перенести все члены соотношений (2) и (3) в правую часть, то эти соотношения можно 
рассматривать как функции. Для того чтобы с помощью условий Каруша – Куна – Такера 
получить необходимые и достаточные условия оптимальности, функции в (1), (2), (3) долж-
ны быть вогнутыми (Heer и Maußner, 2009, с. 6-7). Так как (2) и (3) можно представить как 
линейные функции, то они являются одновременно и вогнутыми, и выпуклыми. Функция (1) 
будет вогнутой, если ее матрица Гессе будет отрицательно полуопределенной, то есть 
���� ≤ 0, где � – матрица Гессе, � – вектор любых действительных чисел (Boyd и 
Vandenberghe, 2004, с. 71, 647). Число элементов вектора � должно быть равно числу 
строк/столбцов матрицы �. В нашем случае должно выполняться следующее неравенство: 

[�� ��] �
��{−��

��} 0

0 ���−����
���

�
� �

��

��
� ≤ 0, (1.1)

где �� и �� – любые действительные числа. 
В (1.1) можно убрать оператор ожидания, так как в фигурных скобках находятся значе-

ния переменных в текущем периоде времени. Учитывая этот факт, можно в итоге свести (1.1) 
к следующему неравенству: 

��
����

� + ����
���

��
� ≥ 0. (1.2)

Предполагая, что �� > 0, при выполнении определенных ранее ограничений на пара-
метры, (1.2) будет выполняться. Таким образом, при соблюдении данных ограничений, (1) 
можно считать вогнутой функцией. 

Теперь можно приступить к максимизации (1) при учете (2) и (3), используя условия 
Каруша – Куна – Такера. Для этого необходимо сформировать следующий лагранжиан: 

ℒ =

= �� �� ���� �ln �� − �
��

���

1 + �
+ ������� + ���� − ��(�� + ��)� +

�

���

+ ��(���� − (1 − �)�� − ��)��, 

(1.3)

где ℒ – лагранжиан, �� ≥ 0 и �� – множители Каруша – Куна – Такера. 
Максимизация (1.3) должна осуществляться по переменным ��, ��, �� периода с � до 

бесконечности, по �� – с периода � + 1 до бесконечности (так как �� – предопределенная в 
предыдущем периоде времени переменная). Однако будущие значения переменных являются 
недетерминированными. Поэтому домохозяйство в период времени � принимает решение 
только о значениях переменных периода � (в случае �� – (� + 1)), а решения о будущих зна-
чениях переменных откладывает до соответствующего периода времени, когда оно будет 
владеть наиболее полной информацией. Таким образом, с проблемой максимизации (1.3) до-
мохозяйство сталкивается в каждом периоде времени. Более подробное толкование этой 
проблемы дают Heer и Maußner (2009) и Den Haan (2010). 

Исходя из вышеуказанного, запишем условия Каруша – Куна – Такера: 

�ℒ

���
=

1

��
− ���� = 0 (1.4)

�ℒ

���
= −���

�
+ ���� = 0 (1.5)



Александр Зарецкий 

18 

 

�ℒ

�����
= �� + ���{�������� − (1 − �)����}= 0 (1.6)

�ℒ

���
= −���� − �� = 0 (1.7)

������� + ���� − ��(�� + ��)� = 0. (1.8)

Условия (1.4)–(1.8) должны соблюдаться в каждом периоде времени �. 
Соотношения (1.4)–(1.7) после ряда алгебраических преобразований можно упростить 

до двух условий: 

��

��

= �����
�

 (1.9)

��� �
����

��������
+

1 − �

����
� =

1

��
. (1.10)

Рассмотрим условие (1.8). Сначала заметим, что ���� – это предельная полезность по-
требления товара, что видно из (1.4). Делая предположение, что �� > 0 в любой период вре-
мени, получаем, что предельная полезность потребления всегда положительна (это стандарт-
ное предположение, которое формулируется, например, Galí (2008, с. 15)). Исходя из этого, 
�� > 0, а значит, условие (2) должно соблюдаться как равенство. Соответственно, запишем 
еще одно условие оптимальности: 

��(�� + ��) = ���� + ����. (1.11)

Помимо условий (1.9)–(1.11), для оптимизационных проблем, подобных нашей, форму-
лируется условие трансверсальности, смысл которого рассматривает, например, Den Haan 
(2010). Согласно данному условию, ожидаемое значение объема капитала в бесконечно да-
леком периоде, дисконтированное к текущему периоду, должно быть равно нулю: 

lim
�→�

������{��������} = 0, (1.12)

где � – период времени. 
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ПРИЛОЖЕНИЕ 2. РЕШЕНИЕ ОПТИМИЗАЦИОННОЙ ПРОБЛЕМЫ ФИРМЫ 

Функция (7) является и выпуклой, и вогнутой одновременно. Так как (8) является ограниче-
нием, то для проверки на вогнутость его необходимо привести к виду: 

�(��, ��, ��) = ����
�(����)��� − ��. (2.1)

У матрицы Гессе функции (2.1) два собственных значения: 0 и: 

−
�������

�(1 − �)(��
� + ��

�)

����
�(����)�

. (2.2)

Для того чтобы эрмитова матрица была отрицательно полуопределенной, необходимо и 
достаточно, чтобы все ее собственные значения были неположительными (Marcus и Minc, 
1964, с. 69). То есть выражение (2.2) должно быть неположительным. Предполагая, что в 
любом периоде времени ��, ��, �� > 0, необходимо выполнение следующего условия: 

� − �� ≥ 0. (2.3)

То есть � ∈ [0,1], что согласуется с изначально определенным ограничением на данный па-
раметр. 

По аналогии с решением проблемы домохозяйства можно применить метод Каруша – 
Куна – Такера для решения оптимизационной проблемы фирмы28. Условия максимизации (7) 
при учете (8) (после некоторых преобразований): 

��

��

= (1 − �)
��

��

 (2.4)

��

��
= �

��

��
. (2.5)

 

                                                   
28 Эту проблему можно решить и просто подставив (8) в (7). 
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ПРИЛОЖЕНИЕ 3. ЛОГ-ЛИНЕАРИЗАЦИЯ СООТНОШЕНИЯ (13) ОКОЛО 
УСТОЙЧИВОГО СОСТОЯНИЯ 

Вид разложения логарифмической функции в ряд Тейлора первого порядка следующий: 

ln �� ≈ ln � +
1

�
(�� − �), (3.1)

где ��, � > 0. 
Далее, учитывая введенные ранее обозначения, можно получить: 

��� ≈
��

�
− 1. (3.2)

Разложим обе части (13) в ряд Тейлора первого порядка: 

� + (���� − �) ≈
1 − �

�
� + � +

1 − �

�
(�� − �)+ (�� − �). (3.3)

Первые два члена в правой части (3.3) по определению равны �. Учитывая этот факт, 

разделив обе части (3.3) на �, умножив (�� − �) на 
�

�
 и учитывая (3.2), получаем: 

����� ≈
1 − �

�
��� +

�

�
��̂ . (3.4)

Используя (24) и (23), окончательно получаем лог-линеаризацию (13) около устойчиво-
го состояния: 

������ ≈ (1 − �)��� + ���̂. (3.5)

Аналогичным образом осуществляется лог-линеаризация других соотношений. 
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ПРИЛОЖЕНИЕ 4. ВИД НЕКОТОРЫХ МАТРИЦ, ИСПОЛЬЗУЕМЫХ В РАЗДЕЛЕ 3 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
� 0 0 0 0 0 0

0 1 0 0 −
��

�
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.1)

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 − � 0 0 � 0 0 0

0 1 0 0 0 0 0
0 1 � 0 0 −1 0
� 0 1 − � 0 0 0 −1
0 0 −1 0 0 −1 1

−1 0 0 0 −1 0 1

0 1 −
��

�
0

��

�
0 0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.2)

� =

⎣
⎢
⎢
⎢
⎢
⎡

−� 0 0 1 0

−(1 − �) 0 0 0 1
−1 0 0 −1 1
0 0 −1 0 1

0 −
��

�
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 (4.3)

� =

⎣
⎢
⎢
⎢
⎢
⎡
0 1
� 0
0 0
1 0

0 1 −
��

� ⎦
⎥
⎥
⎥
⎥
⎤

 (4.4)

� = �
� 0
0 1

� (4.5)

� = �

0 0 0 0 0

0 0 −
��

�
0 0

� (4.6)

� = �
1 − � 0

0 1
� (4.7)

� = �
0 � 0 0 0
0 0 0 0 0

�. (4.8)
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ПРИЛОЖЕНИЕ 5. АЛГОРИТМ ПРОВЕРКИ ВЫПОЛНЕНИЯ УСЛОВИЯ (45)29 

i=0; 
j=0; 
for alpha=0.0001:0.045:0.9999 

for beta=0.0001:0.045:0.9999 
for delta=0.0001:0.045:0.9999 

for g=1.0001:0.045:2 
for phi=0:0.1:5 

kappa=g/beta-1+delta; 
lambda=g-1+delta; 
G=[-phi 0 0 1 0;alpha-1 0 0 0 1;-1 0 0 -1 1;0 0 -1 0 1;0 -alpha*lambda/kappa 0 0 1]; 
H=[0 1;alpha 0;0 0;1 0;0 1-alpha*lambda/kappa]; 
K=[0;1;0;0;0]; 
L=[g 0;0 1]; 
M=[0 0 0 0 0;0 0 -beta*kappa/g 0 0]; 
N=[1-delta 0;0 1]; 
P=[0 lambda 0 0 0;0 0 0 0 0]; 
Q=(L+M*G^(-1)*H)^(-1)*(N+P*G^(-1)*H); 
if min(abs(eig(Q)))<=1 

if max(abs(eig(Q)))>1 
i=i+1; 

else j=j+1; 
end 

else j=j+1; 
end 

end 
end 

end 
end 

end 
i 
j 

                                                   
29 Алгоритм реализован на языке MATLAB. Верхние границы для параметров g и phi определялись с запасом 
исходя из теоретических соображений, а также (относительно параметра phi) с учетом выводов Christiano, 
Trabandt и Walentin (2010). Для того чтобы условие (45) выполнялось, значение j по результатам выполнения 
алгоритма должно быть равно нулю. С помощью алгоритма было протестировано 14 271 891 комбинаций пара-
метров. 
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ПРИЛОЖЕНИЕ 6. ВЫВОД СООТНОШЕНИЯ (46) 

����,���
∗ = ����,�

∗ + ����� 

��,�
∗ =

1

��

����,���
∗ −

��

��

��� 

��,�
∗ =

1

��

�� �
1

��

������,���
∗ −

��

��

������ −
��

��

��� 

��,�
∗ =

1

��
� ����,���

∗ −
��

��
� ���� −

��

��

��� 

⋯ 

��,�
∗ = lim

�→�
�

1

��
� ����,���

∗ − ����� �
����

��
�

�

���
� 

��,�
∗ = lim

�→�
�

1

��
�� lim

�→�
�����,���

∗ � − ����� lim
�→�

��
����

��
�

�

���
� 

��,�
∗ = 0 × lim

�→�
�����,���

∗ � − �����

��
��

1 −
�
��

 

��,�
∗ = 0 − �����

1

�� − �
 

��,�
∗ =

��

� − ��
���. 

При выводе соотношения (46) учитывалось, что �� > 1, 0 < � < 1, а значит, 0 <
�

��
< 1. 

Предполагалось, что ����,���
∗  ограничено, так как логарифмические отклонения капитала и 

потребления (с устраненным трендом) от устойчивых значений – стационарные переменные 
(согласно введенным предпосылкам). Также учитывалось, что имеет место равенство: 

��{��������}= �(�(����|�����)|���) = �(����|���) = ������, (6.1)

где �� – некоторая переменная, ��� ⊂ �����. 
Доказательство (6.1) приводят Ljungqvist и Sargent (2004, с. 33). 
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ПРИЛОЖЕНИЕ 7. АЛГОРИТМ РАЗРЕШЕНИЯ МОДЕЛИ С ПОМОЩЬЮ МЕТОДА 
БЛАНШАРА – КАНА30 

alpha=0.54; 
beta=0.99; 
delta=0.035; 
g=1.016; 
phi=3; 
kappa=g/beta-1+delta; 
lambda=g-1+delta; 
G=[-phi 0 0 1 0;alpha-1 0 0 0 1;-1 0 0 -1 1;0 0 -1 0 1;0 -alpha*lambda/kappa 0 0 1]; 
H=[0 1;alpha 0;0 0;1 0;0 1-alpha*lambda/kappa]; 
K=[0;1;0;0;0]; 
L=[g 0;0 1]; 
M=[0 0 0 0 0;0 0 -beta*kappa/g 0 0]; 
N=[1-delta 0;0 1]; 
P=[0 lambda 0 0 0;0 0 0 0 0]; 
Q=(L+M*G^(-1)*H)^(-1)*(N+P*G^(-1)*H); 
[S1,J1]=jordan(Q); 
if abs(J1(1,1))<=1 && abs(J1(2,2))>1 

J=J1; 
S=S1; 

elseif abs(J1(1,1))>1 && abs(J1(2,2))<=1 
J=[J1(2,2) 0;0 J1(1,1)]; 
S=horzcat(S1(:,2),S1(:,1)); 

elseif abs(J1(1,1))>1 && abs(J1(2,2))>1 
error('explosive solution') 

elseif abs(J1(1,1))<=1 && abs(J1(2,2))<=1 
error('multiple equilibria') 

else 
error('indeterminacy') 

end 
rho=0.7; 
R=(L+M*G^(-1)*H)^(-1)*(P*G^(-1)*K-M*G^(-1)*K*rho); 
S1=S^(-1); 
U=S1*R; 
V1=-S1(2,1)/S1(2,2); 
V2=U(2,1)/S1(2,2)/(rho-J(2,1)); 
V3=(J(1,1)*S1(1,2)*V2+U(1,1)-S1(1,2)*V2*rho)/(S1(1,1)+S1(1,2)*V1); 
V4=G^(-1)*H*[1;V1]; 
V5=G^(-1)*H*[0;V2]+G^(-1)*K; 
W=[J(1,1) V3;0 rho] 
X=[0;1] 
Y=[V1 V2;V4 V5] 
 

                                                   
30 Алгоритм реализован на языке MATLAB. 
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ПРИЛОЖЕНИЕ 8. ВЫРАЖЕНИЯ ДЛЯ НЕКОТОРЫХ ПАРАМЕТРОВ МОДЕЛИ (В 
ОБЩЕМ ВИДЕ, НА ОСНОВЕ ВОЗМОЖНОЙ КАЛИБРОВКИ ПО РЕАЛЬНЫМ 
ДАННЫМ) 

� = 1 −
�ℎ

�
 (7.1)

� =
�

� + � − �ℎ
 (7.2)

� =
�

�ℎ�
 (7.3)31

� = 1 − �
� − �

� − �ℎ
 (7.4)

� =
��

� − �ℎ
 (7.5)

� =
�

ℎ
�

ℎ�

� − �ℎ
�

��
��
�

. (7.6)

 

                                                   
31 Для окончательного определения � необходимо определение �. 
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ПРИЛОЖЕНИЕ 9. КОД DSGE-МОДЕЛИ ДЛЯ ПРОГРАММЫ DYNARE32 

var a c h i k r w y; 
varexo e; 
 

parameters A alpha beta delta g gamma phi rho lambda kappa; 
A=1; 
alpha=0.54; 
beta=0.99; 
delta=0.035; 
g=1.016; 
gamma=0.005; 
phi=3; 
rho=0.7; 
lambda=g-1+delta; 
kappa=g/beta-1+delta; 
 

model; 
k=(1-delta)/g*k(-1)+i(-1); 
w=gamma*c*h^phi; 
beta*(r(+1)+1-delta)/c(+1)=g/c; 
y=g^(-alpha)*a*k^alpha*h^(1-alpha); 
a=(a(-1))^rho*A^(1-rho)*exp(e); 
w=(1-alpha)*y/h; 
r=alpha*g*y/k; 
y=c+i; 
end; 
 

steady_state_model; 
a=A; 
y=a^(1/(1-alpha))*(alpha/kappa)^(alpha/(1-alpha))*(kappa*(1-alpha)/gamma/(kappa-
alpha*lambda))^(1/(1+phi)); 
c=(1-alpha*lambda/kappa)*y; 
h=(kappa*(1-alpha)/gamma/(kappa-alpha*lambda))^(1/(1+phi)); 
i=alpha*lambda/kappa*y; 
k=alpha*g/kappa*y; 
r=kappa; 
w=(1-alpha)^(phi/(1+phi))*(gamma-gamma*alpha*lambda/kappa)^(1/(1+phi))*y; 
end; 
 
shocks; 
var e; stderr 1; 
end; 
 

stoch_simul(nocorr, nofunctions, order=1); 

                                                   
32 Модель представлена в переменных с устраненным трендом (согласно введенным предпосылкам), то есть ис-
пользуются соотношения (13)–(20). Параметры модели откалиброваны с учетом особенностей Беларуси и дру-
гих исследований. В программе Dynare лог-линеаризация (также может применяться аппроксимация 2-го и 3-го 
порядка) и разрешение модели осуществляются автоматически. Для решения лог-линеаризованных систем ис-
пользуется метод, основанный на работах Klein (2000) и Sims (2000). Автоматически могут быть найдены и 
устойчивые значения переменных, но для успешности реализации данной процедуры в коде должны быть ука-
заны как можно более близкие к устойчивым начальные значения переменных. В данной работе устойчивые 
значения уже определены, поэтому они задаются вручную. 
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